Готовые школьные сочинения

Коллекция шпаргалок школьных сочинений. Здесь вы найдете шпору по литературе и русскому языку.

Повышение уровня обобщённости изучаемых знаний

В настоящее время школьный курс математики далеко отстаёт от математики как науки по уровню обобщённости знаний. Если в современной математике уровень обобщённости очень высок, то в школьном курсе математики он пока ещё весьма низок. Его повышение (в разумных пределах) приведёт к повышению информационной ценности изучаемых знаний, и также к резкому сокращению времени на их усвоение.

 

Следует особо отметить, что только на этом пути можно избавиться от пресловутой перегрузки учащихся, ибо общими понятиями современный школьный курс математики, не только не перегружен, но явно не догружен.

 

Проблема развития самостоятельности мышления учащихся в процессе обучения математике является острой, ещё не разрешённой проблемой методики математики.

 

Анализ характера умственной деятельности учеников на различных уроках, в разных классах показал, что лишь 15 - 20 % учебного времени тратится на самостоятельную работу, чем старше класс, тем самостоятельных работ меньше.

 

Создаётся ненормальное положение: с возрастом учащиеся, конечно, становятся более способными к самостоятельной работе, а им предоставляют для этого всё меньше времени.

 

Если в числе тренировочных упражнений преобладают однотипные, при решении которых ученик ограничивается лишь получением ответа и сверкой его с готовым ответом, то такие упражнения не направляют усилия ученика на разрешение иных нешаблонных заданий, с чем ему придётся встречаться в жизни.

 

Знания ученика будут прочными, если они приобретены не одной памятью, не заучены механически, а являются продуктом собственных размышлений и закрепились в результате его собственной творческой деятельности над учебным материалом.

 

Не случайно Леонид Эйлер полагал, что кроме описания результатов своих исследований, обогативших науку, ему надобно для общей пользы чистосердечно изложить ещё и процесс искания истины со всеми его исканиями и затруднениями.

 

Действующие учебники математики мало, чем могут помочь развитию творческих начал: в них по меткому выражению профессора Б. В. Гнеденко, спрятаны все концы, дана уже готовая схема, знания представлены в статистическом состоянии, в завершённых формах.

 

Под обобщением будем понимать распространение, какого-либо суждения от частого понятия к общему (например, от “четырёхугольника” до “трапеции, ромба…”).

 

Суждения, полученные по аналогии, будут проблематическими и подлежат дальнейшему исследованию и доказательству.

 

Умозаключения по аналогии являются непременной составной частью творческого мышления, так как этим путём мысль человека выходит за пределы известного, пролагая путь к неизвестному.

 

Умственное развитие учащихся, которые должны подготавливаться уже в период школьного обучения к роли творчески мыслящих активных деятелей, не может быть полноценным, если их не научат в школе специально применению приёма аналогии.

 

Простое применение аналогии даёт упражнение подобное, однопорядковое с исходным. От него следует отличать составление задачи обобщением, когда новая задача оказывается в том или ином отношении сложнее исходной.

 

Процесс обобщения основывается на применении аналогии, но не сводится полностью к ней.

 

Применение обобщения связано с преобразованием мыслей, с умственным экспериментированием; оно есть одно из самых важных средств самообучения, то есть, самостоятельного расширения и углубления имеющихся знаний.

 

Для достижения глубокого усвоения нового понятия, способа решения нельзя обходиться задачами одного уровня трудности, а нужно предложить обобщённую задачу, а ещё лучше дать учащимся возможность самим обобщить решённую задачу, чтобы затем решить таковую, видоизменяя, если нужно прежний способ.

 

В практике обучения общее классное задание рассчитано на среднего ученика, а для расширения познавательных способностей более сильных учащихся необходимы дополнительные задания по самостоятельному обобщению и решению составленных задач.

 

Если, скажем готовую задачу, решают все учащиеся в основном одинаковой последовательностью рассуждений, то с обобщением уже справляется не всякий. Результат обобщения зависит не столько от суммы знаний, примерно одинаковой для всех учащихся класса, а от умения комбинировать, связывать эти знания по-новому, заглядывать дальше обычных пределов.

 

Характер упражнений, выполняемых в классе, должен отразится и на характере контрольных и проверочных работ; чему обучают, то и следует проверять.

 

Всякая математическая задача неисчерпаема в своих связях с другими задачами; после решения задачи почти всегда можно найти предмет размышления, найти несколько направлений, в которых удаётся обобщить задачу, и найти затем решение созданных таким образом новых проблем.

 

Время и усилия, затраченные на обобщение знаний, окупаются той большой экономией мышления, в последующем, которые достигаются благодаря единообразным методам усвоения материала.

 

Значение повторения

 

Одним из важнейших вопросов, способствующих дальнейшему повышению успеваемости, достижению глубоких и прочных знаний у учеников является вопрос о повторении ранее пройденного материала.

 

Без прочного сохранения приобретенных знаний, без умения воспроизвести в необходимый момент, ранее пройденный материал, изучение нового материала всегда будет сопряжено с большими трудностями и не дает надлежащего эффекта.

 

«Обучение нельзя довести до основательности без возможно более частых и особенно искусно поставленных повторений и упражнений», - говорил Каменский.

 

Преподавать математику, не повторяя повседневно на каждом уроке ранее пройденный материал, это значит - передать, пересказать учащимся определенную сумму различных законов, теорем, формул и т. п., совершенно не заботясь о том, насколько прочно и сознательно освоили этот материал наши питомцы; это значит не дать детям глубоких и прочных знаний. Работать так, это, по меткому выражению Ушинского, уподобиться «пьяному вознице с дурно увязанной кладью: он все гонит вперед, не оглядываясь назад, и привозит домой пустую телегу, хвастаясь только тем, что сделал большую дорогу».

 

Ранее пройденный материал должен служить фундаментом, на который опирается изучение нового материала, который в свою очередь, должен обогащать и расширять ранее изученные понятия.

 

«Старое должно подпирать новое, а новое обогащать старое».

 

Правильно организованное повторение помогает ученику увидеть в старом нечто новое; помогает установить логические связи между вновь изучаемым материалом и ранее изученным; обогащает память ученика; расширяет его кругозор; приводит знания ученика в систему; дисциплинирует ученика; приучает в нем уменье находить необходимого для ответа на поставленный вопрос материал; воспитывает в ученике чувство ответственности.

 

В связи с этим особо важное значение приобретают вопросы: Что надо повторять? Как повторять? Когда повторять?

 

Большую и серьезную ошибку допускает тот учитель, который побуждает ученика повторять материал в том порядке, в котором он изучался. Повторение в этом случае сводится и механическому воспроизведению в памяти пройденного материала.

 

Ушинский воспитывал против механического повторения. «Нет никакой надобности повторять выученное в том порядке, в каком оно было пройдено, а напротив, ещё полезнее повторения случайные, сводящие выученное в новые комбинации», - говорил он.

 

Повторение пройденного материала должно стать необходимейшим элементом в преподавании математики, органической и неотъемлемой частью каждого урока.

 

Прочное усвоение знаний является главной задачей процесса обучения, это очень сложный процесс. В него входят восприятие учебного материала, его запоминание и осмысливание, а также возможность использования этих знаний в различных условиях.

 

Преподавание математики не может стоять на должном уровне, а знания учащихся не будут достаточно полными и прочными, если в работе учителя отсутствует система повторительно-обобщающих уроков.

 

Это объясняется психологическими особенностями процесса познания и свойств памяти. Только постоянное в определенной системе осуществляемое включение новых знаний в систему прежних знаний может обеспечить достаточно высокое качество усвоения предмета. Только через повторение можно приходить к логическим выводам. Без повторения невозможно, раскрыть сущность вещей и явлений, их развитие. Не даром говорят: “Повторение - мать учения”.

 

Повторение математики необходимо как для учащихся с целью углубления, упрочнены и систематизации своих знания, так и для самого учителя в чётности совершенствование методов обучения и поднятия эффективности своей работы.

 

Повторение математики должно систематически проводиться на уроках, органически сочетаясь с основным содержанием урока.

 

При сообщении нового материала одновременно надо повторять ранее изучаемый материал. Учащиеся должны чувствовать потребность к повторений. Это достигается тем, что при изучении нового материала учитель сравнивает его, сопоставляет со старым, устанавливает аналогии между ними, проводит обобщение, углубление и систематизацию.

 

Перед началом учебного года или четверти необходимо тщательно спланировать материал для повторения, указать виды повторения, через которое оно может проводиться, т. е. устанавливается, какой материал будет проводиться параллельно с изучением новой темы и какой на специально отведенных уроках повторения.

 

Нужна шпаргалка? Тогда сохрани - » Повышение уровня обобщённости изучаемых знаний . Литературные сочинения!

Повышение уровня обобщённости изучаемых знаний